Click image to enlarge

Description

GREETINGS, FEEL FREE
TO

"SHOP NAKED."©





 

We deal in items we believe others will enjoy and want to purchase.

 We are not experts.

We welcome any comments, questions, or concerns.

WE ARE TARGETING A GLOBAL MARKET PLACE.

Thanks in advance for your patronage.

 

Please Be sure to add WDG to your favorites list!

 


NOW FOR YOUR VIEWING PLEASURE…


 

RADIO TUBE LOT
TAKE ONE OR ALL


PAPER BOX
U.S. NAVY
TYPE GL-2C44
DATE 4-28-45
A PRODUCT OF GENERAL ELECTRIC
GE
2C44
19F5
SC7717A
WW2 for US ARMY Signal Corps
military qualified type GL- 2C44 tube (UHF planar triode)
(3PCS)



KEN-RAD
VT-145
W-2
MADE IN THE USA
5" LONG / 4 PRONG
Foil D Getters.
Black ribbed plates.
Mica ends.
Copper rods.
Both tubes tested and guaranteed to perform as new.
 

RCA ELECTRON TUBE
814
V6
7.25" / 5 PRONG
Transmitter tube. Tested on tv7 at 72 where 38 is baseline. In umhos thats 3600 where 1900 is baseline. 3300 is 100%



 
 

---------------------
FYI
 
 
In electronics, vacuum tube, electron tube (in North America), tube, or valve (in British English) is a device that controls electric current through a vacuum in a sealed container. Vacuum tubes mostly rely on thermionic emission of electrons from a hot filament or a cathode heated by the filament. This type is called a thermionic tube or thermionic valve. A phototube, however, achieves electron emission through the photoelectric effect. Not all electron tubes contain vacuum: gas-filled tubes are devices that rely on the properties of a discharge through an ionized gas.
The simplest vacuum tube, the diode, contains only an electron emitting cathode and an electron collecting plate. Current can only flow in one direction through the device between the two electrodes, as electrons emitted by the hot cathode travel through the tube and are collected by the anode. Adding control grids within the tube allows control of the current between the two electrodes. Tubes with grids can be used as electronic amplifiers, rectifiers, electronically controlled switches, oscillators, and for other purposes.
Invented in about 1910, vacuum tubes were a basic component for electronics throughout the first half of the century, which saw the diffusion of radio, television, radar, sound reinforcement, sound recording and reproduction, large telephone networks, analog and digital computers, and industrial process control. Although some applications had counterparts using earlier technologies such as the spark gap transmitter or mechanical computers, it was the invention of the vacuum tubes that made these technologies widespread and practical. In the forties the invention of semiconductor devices made it possible to produce solid-state devices, which are smaller, more efficient, more reliable, more durable, and cheaper than tubes. Hence, in the '50s and '60s, solid-state devices such as transistors, gradually replaced tubes. However there are still a few applications for which tubes are preferred to semiconductors, e. g. high frequency amplifiers.
History and development
The 19th century saw increasing research with evacuated tubes, such as the Geissler and Crookes tubes. Famous scientists who experimented with such tubes included Thomas Edison, Eugen Goldstein, Nikola Tesla, and Johann Wilhelm Hittorf among many others. With the exception of early light bulbs, such tubes were only used in scientific research or as novelties. The groundwork laid by these scientists and inventors, however, was critical to the development of subsequent vacuum tube technology.
Although thermionic emission was originally reported in 1873 by Frederick Guthrie, it was Thomas Edison's 1884 investigation that spurred future research, the phenomenon thus becoming known as the "Edison effect". Edison patented what he found, but he did not understand the underlying physics, nor did he have an inkling of the potential value of the discovery. It wasn't until the early 20th century that the rectifying property of such a device was utilized, most notably by John Ambrose Fleming, who used the diode tube to detect (demodulate) radio signals. Lee De Forest's 1906 "audion" was also developed as a radio detector, and soon led to the development of the triode tube. This was essentially the first electronic amplifier, leading to great improvements in telephony (such as the first coast-to-coast telephone line in the US) and revolutionizing the technology used in radio transmitters and receivers. The electronics revolution of the 20th century arguably began with the invention of the triode vacuum tube.
------------------------
A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power. It is composed of semiconductor material with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.
The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. Following its development in 1947 by American physicists John Bardeen, Walter Brattain, and William Shockley, the transistor revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, and computers, among other things. The transistor is on the list of IEEE milestones in electronics, and the inventors were jointly awarded the 1956 Nobel Prize in Physics for their achievement.
The thermionic triode, a vacuum tube invented in 1907, propelled the electronics age forward, enabling amplified radio technology and long-distance telephony. The triode, however, was a fragile device that consumed a lot of power. Physicist Julius Edgar Lilienfeld filed a patent for a field-effect transistor (FET) in Canada in 1925, which was intended to be a solid-state replacement for the triode. Lilienfeld also filed identical patents in the United States in 1926 and 1928. However, Lilienfeld did not publish any research articles about his devices nor did his patents cite any specific examples of a working prototype. Because the production of high-quality semiconductor materials was still decades away, Lilienfeld's solid-state amplifier ideas would not have found practical use in the 1920s and 1930s, even if such a device had been built. In 1934, German inventor Oskar Heil patented a similar device.
From November 17, 1947 to December 23, 1947, John Bardeen and Walter Brattain at AT&T's Bell Labs in the United States, performed experiments and observed that when two gold point contacts were applied to a crystal of germanium, a signal was produced with the output power greater than the input. Solid State Physics Group leader William Shockley saw the potential in this, and over the next few months worked to greatly expand the knowledge of semiconductors. The term transistor was coined by John R. Pierce as a portmanteau of the term transresistance. According to Lillian Hoddeson and Vicki Daitch, authors of a biography of John Bardeen, Shockley had proposed that Bell Labs' first patent for a transistor should be based on the field-effect and that he be named as the inventor. Having unearthed Lilienfeld’s patents that went into obscurity years earlier, lawyers at Bell Labs advised against Shockley's proposal because the idea of a field-effect transistor that used an electric field as a "grid" was not new. Instead, what Bardeen, Brattain, and Shockley invented in 1947 was the first point-contact transistor. In acknowledgement of this accomplishment, Shockley, Bardeen, and Brattain were jointly awarded the 1956 Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect."
In 1948, the point-contact transistor was independently invented by German physicists Herbert Matare and Heinrich Welker while working at the Compagnie des Freins et Signaux, a Westinghouse subsidiary located in Paris. Matare had previous experience in developing crystal rectifiers from silicon and germanium in the German radar effort during World War II. Using this knowledge, he began researching the phenomenon of "interference" in 1947. By witnessing currents flowing through point-contacts, similar to what Bardeen and Brattain had accomplished earlier in December 1947, Matare by June 1948, was able to produce consistent results by using samples of germanium produced by Welker. Realizing that Bell Labs' scientists had already invented the transistor before them, the company rushed to get its "transistron" into production for amplified use in France's telephone network.
The first high-frequency transistor was the surface-barrier germanium transistor developed by Philco in 1953, capable of operating up to 60 MHz.[14] These were made by etching depressions into an N-type germanium base from both sides with jets of Indium(III) sulfate until it was a few ten-thousandths of an inch thick. Indium electroplated into the depressions formed the collector and emitter. The first all-transistor car radio, which was produced in 1955 by Chrysler and Philco, used these transistors in its circuitry and also they were the first suitable for high-speed computers.
The first working silicon transistor was developed at Bell Labs on January 26, 1954 by Morris Tanenbaum. The first commercial silicon transistor was produced by Texas Instruments in 1954. This was the work of Gordon Teal, an expert in growing crystals of high purity, who had previously worked at Bell Labs. The first MOS transistor actually built was by Kahng and Atalla at Bell Labs in 1960.
 

 

---------------------------

 

 

Thanks for choosing this sale. You may email for alternate payment arrangements. We combine shipping. Please pay promptly after the auction. The item will be shipped upon receipt of funds.  WE ARE GOING GREEN, SO WE DO SOMETIMES USE CLEAN RECYCLED MATERIALS TO SHIP. 

 

 

Please leave feedback when you have received the item and are satisfied. Please respond when you have received the item.

*****

5*'s

*****

If you were pleased with this transaction, please respond with all 5 stars! If you are not pleased, let us know via e-mail. Our goal is for 5-star service. We want you to be a satisfied, return customer.

 

 

Please express any concerns or questions. More pictures are available upon request. The winning bid will incur the cost of S/H INSURED FEDEX OR USPS. See rate calculator or email FOR ESTIMATE. International Bidders are Welcome but be mindful if your country is excluded from safe shipping. 

 

 

 

 

 Thanks for perusing THIS and ALL our auctions.

 

Please Check out our other items!

 

 

WE like the curious and odd.

 

BUY, BYE!!